透彻的理解:循环神经网络(RNN)

神经网络基础

神经网络可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y,结构图如下:

111.jpg

将神经网络模型训练好之后,在输入层给定一个x,通过网络之后就能够在输出层得到特定的y,那么既然有了这么强大的模型,为什么还需要RNN(循环神经网络)呢?

为什么需要RNN(循环神经网络)

他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。

比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列; 当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。

以nlp的一个最简单词性标注任务来说,将我 吃 苹果 三个单词标注词性为 我/nn 吃/v 苹果/nn

那么这个任务的输入就是:

我 吃 苹果 (已经分词好的句子)

这个任务的输出是:

我/nn 吃/v 苹果/nn(词性标注好的句子)

对于这个任务来说,我们当然可以直接用普通的神经网络来做,给网络的训练数据格式了就是我-> 我/nn 这样的多个单独的单词->词性标注好的单词。

但是很明显,一个句子中,前一个单词其实对于当前单词的词性预测是有很大影响的,比如预测苹果的时候,由于前面的吃是一个动词,那么很显然苹果作为名词的概率就会远大于动词的概率,因为动词后面接名词很常见,而动词后面接动词很少见。

所以为了解决一些这样类似的问题,能够更好的处理序列的信息,RNN就诞生了。

RNN结构

首先看一个简单的循环神经网络如,它由输入层、一个隐藏层和一个输出层组成:

20w.jpg

不知道初学的同学能够理解这个图吗,反正我刚开始学习的时候是懵逼的,每个结点到底代表的是一个值的输入,还是说一层的向量结点集合,如何隐藏层又可以连接到自己,等等这些疑惑~这个图是一个比较抽象的图。

我们现在这样来理解,如果把上面有W的那个带箭头的圈去掉,它就变成了最普通的全连接神经网络。x是一个向量,它表示输入层的值(这里面没有画出来表示神经元节点的圆圈);s是一个向量,它表示隐藏层的值(这里隐藏层面画了一个节点,你也可以想象这一层其实是多个节点,节点数与向量s的维度相同);

U是输入层到隐藏层的权重矩阵,o也是一个向量,它表示输出层的值;V是隐藏层到输出层的权重矩阵

那么,现在我们来看看W是什么。循环神经网络隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。

我们给出这个抽象图对应的具体图:

0_720w.jpg

我们从上图就能够很清楚的看到,上一时刻的隐藏层是如何影响当前时刻的隐藏层的。

如果我们把上面的图展开,循环神经网络也可以画成下面这个样子:

675_720w.jpg

RNN时间线展开图
现在看上去就比较清楚了,这个网络在t时刻接收到输入 XtX_t 之后,隐藏层的值是 StS_t ,输出值是 OtO_t 。关键一点是,StS_t 的值不仅仅取决于XtX_t ,还取决于S(t1)S(t-1) 。我们可以用下面的公式来表示循环神经网络的计算方法:

用公式表示如下:

7_720w.png

RNN公式
总结

式1输出层的计算公式,输出层是一个全连接层,也就是它的每个节点都和隐藏层的每个节点相连。V是输出层的权重矩阵,g是激活函数。式2是隐藏层的计算公式,它是循环层。U是输入x的权重矩阵,W是上一次的值S(t1)S_(t-1_)作为这一次的输入的权重矩阵,f是激活函数

从上面的公式我们可以看出,循环层全连接层的区别就是循环层多了一个权重矩阵 W

如果反复把式2带入到式1,我们将得到:

213.PNG

从上面可以看出,循环神经网络的输出值oto_t,是受前面历次输入值xtx_tx(t1)x_(t-1_)x(t2)x_(t-2_)x(t3)x_(t-3_)、…影响的,这就是为什么循环神经网络可以往前看任意多个输入值的原因。

好了,到这里大概讲解了RNN最基本的几个知识点,能够帮助大家直观的感受RNN和了解为什么需要RNN,后续总结它的反向求导知识点。

最后给出RNN的总括图:

9a_720w.jpg

注意:为了简单说明问题,偏置都没有包含在公式里面。

双向循环神经网络

对于语言模型来说,很多时候光看前面的词是不够的,比如下面这句话:

我的手机坏了,我打算____一部新手机。

可以想象,如果我们只看横线前面的词,手机坏了,那么我是打算修一修?换一部新的?还是大哭一场?这些都是无法确定的。但如果我们也看到了横线后面的词是『一部新手机』,那么,横线上的词填『买』的概率就大得多了。

在上一小节中的基本循环神经网络是无法对此进行建模的,因此,我们需要双向循环神经网络,如下图所示:

220.png

当遇到这种从未来穿越回来的场景时,难免处于懵逼的状态。不过我们还是可以用屡试不爽的老办法:先分析一个特殊场景,然后再总结一般规律。我们先考虑上图中,y2的计算。

从上图可以看出,双向卷积神经网络的隐藏层要保存两个值,一个A参与正向计算,另一个值A’参与反向计算。最终的输出值y2取决于A2A_2A2A{_2}’。其计算方法为:

2121.PNG

A2A_2A2A{_2}’则分别计算:

23323.PNG

现在,我们已经可以看出一般的规律:正向计算时,隐藏层的值sts_ts(t+1)s{_(t+1_)}’有关;反向计算时,隐藏层的值与有关;最终的输出取决于正向和反向计算的加和。现在,我们仿照式1式2,写出双向循环神经网络的计算方法:

245.PNG

从上面三个公式我们可以看到,正向计算和反向计算不共享权重,也就是说U和U’、W和W’、V和V’都是不同的权重矩阵

深度循环神经网络

前面我们介绍的循环神经网络只有一个隐藏层,我们当然也可以堆叠两个以上的隐藏层,这样就得到了深度循环神经网络。如下图所示:

26.png

我们把第i个隐藏层的值表示为st(i)s_{t}^{(i)}st(i)s_{t}^{‘(i)},则深度循环神经网络的计算方式可以表示为:

1256.PNG

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享