详解 「二分滑动窗口」& 「双指针」,从 O(NlogN) 到 O(N) 的优化 | Java 刷题打卡

本文正在参加「Java主题月 – Java 刷题打卡」,详情查看 活动链接

题目描述

这是 LeetCode 上的 1438. 绝对差不超过限制的最长连续子数组 ,难度为 中等

Tag : 「滑动窗口」、「单调队列」、「二分」

给你一个整数数组 nums ,和一个表示限制的整数 limit,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit 。

如果不存在满足条件的子数组,则返回 0 。

 

示例 1:

输入:nums = [8,2,4,7], limit = 4
输出:2 
解释:所有子数组如下:
[8] 最大绝对差 |8-8| = 0 <= 4.
[8,2] 最大绝对差 |8-2| = 6 > 4. 
[8,2,4] 最大绝对差 |8-2| = 6 > 4.
[8,2,4,7] 最大绝对差 |8-2| = 6 > 4.
[2] 最大绝对差 |2-2| = 0 <= 4.
[2,4] 最大绝对差 |2-4| = 2 <= 4.
[2,4,7] 最大绝对差 |2-7| = 5 > 4.
[4] 最大绝对差 |4-4| = 0 <= 4.
[4,7] 最大绝对差 |4-7| = 3 <= 4.
[7] 最大绝对差 |7-7| = 0 <= 4. 
因此,满足题意的最长子数组的长度为 2 。
复制代码

示例 2:

输入:nums = [10,1,2,4,7,2], limit = 5
输出:4 
解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
复制代码

示例 3:

输入:nums = [4,2,2,2,4,4,2,2], limit = 0
输出:3
复制代码

提示:

  • 1 <= nums.length <= 10510^5
  • 1 <= nums[i] <= 10910^9
  • 0 <= limit <= 10910^9

二分 + 滑动窗口

image.png

数据范围是 10510^5,因此只能考虑「对数解法」和「线性解法」。

对数解法很容易想到「二分」。

在给定 limit 的情况下,倘若有「恰好」满足条件的区间长度为 len,必然存在满足条件且长度小于等于 len 的区间,同时必然不存在长度大于 len 且满足条件的区间。

因此长度 len 在数轴中具有「二段性」。

问题转化为「如何判断 nums 中是否有长度 len 的区间满足绝对值不超过 limit

我们可以枚举区间的右端点 r,那么对应的左端点为 r - len + 1,然后使用「单调队列」来保存区间的最大值和最小值。

class Solution {
    public int longestSubarray(int[] nums, int limit) {
        int n = nums.length;
        int l = 1, r = n;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (check(nums, mid, limit)) {
                l = mid;
            } else {
                r = mid - 1;
            }
        }
        return r;
    }
    boolean check(int[] nums, int len, int limit) {
        int n = nums.length;
        Deque<Integer> max = new ArrayDeque<>(), min = new ArrayDeque<>();
        for (int r = 0, l = r - len + 1; r < n; r++, l = r - len + 1) {
            if (!max.isEmpty() && max.peekFirst() < l) max.pollFirst();
            while (!max.isEmpty() && nums[r] >= nums[max.peekLast()]) max.pollLast();
            max.addLast(r);
            if (!min.isEmpty() && min.peekFirst() < l) min.pollFirst();
            while (!min.isEmpty() && nums[r] <= nums[min.peekLast()]) min.pollLast();
            min.addLast(r);
            if (l >= 0 && Math.abs(nums[max.peekFirst()] - nums[min.peekFirst()]) <= limit) return true;
        }
        return false;
    }
}
复制代码
  • 时间复杂度:枚举长度的复杂度为 O(logn)O(\log{n}),对于每次 check 而言,每个元素最多入队和出队常数次,复杂度为 O(n)O(n)。整体复杂度为 O(nlogn)O(n\log{n})
  • 空间复杂度:O(n)O(n)

双指针

image.png

上述解法我们是在对 len 进行二分,而事实上我们可以直接使用「双指针」解法找到最大值。

始终让右端点 r 右移,当不满足条件时让 l 进行右移。

同时,还是使用「单调队列」保存我们的区间最值,这样我们只需要对数组进行一次扫描即可得到答案。

class Solution {
    public int longestSubarray(int[] nums, int limit) {
        int n = nums.length;
        int ans = 0;
        Deque<Integer> max = new ArrayDeque<>(), min = new ArrayDeque<>();
        for (int r = 0, l = 0; r < n; r++) {
            while (!max.isEmpty() && nums[r] >= nums[max.peekLast()]) max.pollLast();
            while (!min.isEmpty() && nums[r] <= nums[min.peekLast()]) min.pollLast();
            max.addLast(r);
            min.addLast(r);
            while (Math.abs(nums[max.peekFirst()] - nums[min.peekFirst()]) > limit) {
                l++;
                if (max.peekFirst() < l) max.pollFirst();
                if (min.peekFirst() < l) min.pollFirst();
            }
            ans = Math.max(ans, r - l + 1);
        }
        return ans;
    }
}
复制代码
  • 时间复杂度:每个元素最多入队和出队常数次,复杂度为 O(n)O(n)
  • 空间复杂度:O(n)O(n)

最后

这是我们「刷穿 LeetCode」系列文章的第 No.1438 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享