alloc
是我们日常开发中经常遇到,下面我们从源码层面分析一下,alloc
方法的底层。
准备工作-获取源码
开始探究
我们新建一个类JSPerson
//.h
@interface JSPerson : NSObject
@end
//.m
@implementation JSPerson
@end
复制代码
在main
方法中初始化JSPerson
int main(int argc, const char * argv[]) {
@autoreleasepool {
JSPerson *person = [JSPerson alloc];
NSLog(@"%@",person);
}
return 0;
}
复制代码
在JSPerson *person = [JSPerson alloc];
这行添加断点运行。
按control
键发现断点走到了
KCObjcBuild`objc_alloc:
-> 0x100003f44 <+0>: jmpq *0x40be(%rip) ; (void *)0x0000000100003f76
复制代码
说明这个时候调用了objc_alloc
方法,我们打一个objc_alloc
的符号断点,继续执行程序,发现断点来到了objc_alloc
的源码部分。
// Calls [cls alloc].
id
objc_alloc(Class cls)
{
return callAlloc(cls, true/*checkNil*/, false/*allocWithZone*/);
}
复制代码
我们继续进入callAlloc
方法:
static ALWAYS_INLINE id
callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
#if __OBJC2__
if (slowpath(checkNil && !cls)) return nil;
if (fastpath(!cls->ISA()->hasCustomAWZ())) {
return _objc_rootAllocWithZone(cls, nil);
}
#endif
// No shortcuts available.
if (allocWithZone) {
return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
}
return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
}
复制代码
我们继续走断点,发现走到了return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
即又调用了alloc方法,也就是说callAlloc
也会再次调用。
继续调试这次走到了return _objc_rootAllocWithZone(cls, nil);
,断点进入_objc_rootAllocWithZone
方法看一下源码:
id
_objc_rootAllocWithZone(Class cls, malloc_zone_t *zone __unused)
{
// allocWithZone under __OBJC2__ ignores the zone parameter
return _class_createInstanceFromZone(cls, 0, nil,
OBJECT_CONSTRUCT_CALL_BADALLOC);
}
复制代码
代码很简单,我们继续跟进到_class_createInstanceFromZone
方法:
static ALWAYS_INLINE id
_class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
int construct_flags = OBJECT_CONSTRUCT_NONE,
bool cxxConstruct = true,
size_t *outAllocatedSize = nil)
{
ASSERT(cls->isRealized());
// Read class's info bits all at once for performance
bool hasCxxCtor = cxxConstruct && cls->hasCxxCtor();
bool hasCxxDtor = cls->hasCxxDtor();
bool fast = cls->canAllocNonpointer();
size_t size;
///获取实例大小
size = cls->instanceSize(extraBytes);
if (outAllocatedSize) *outAllocatedSize = size;
id obj;
if (zone) {
obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
} else {
//分配内存
obj = (id)calloc(1, size);
}
if (slowpath(!obj)) {
if (construct_flags & OBJECT_CONSTRUCT_CALL_BADALLOC) {
return _objc_callBadAllocHandler(cls);
}
return nil;
}
///关联isa指针
if (!zone && fast) {
obj->initInstanceIsa(cls, hasCxxDtor);
} else {
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
if (fastpath(!hasCxxCtor)) {
return obj;
}
construct_flags |= OBJECT_CONSTRUCT_FREE_ONFAILURE;
return object_cxxConstructFromClass(obj, cls, construct_flags);
}
复制代码
_class_createInstanceFromZone
方法有三个关键的点,我们下面分别分析:
获取实例大小 size = cls->instanceSize(extraBytes)
内联函数instanceSize
的作用是获取实例的大小,对象的大小取决于其ivars
(成员变量)的大小。
// May be unaligned depending on class's ivars.
uint32_t unalignedInstanceSize() const {
ASSERT(isRealized());
return data()->ro()->instanceSize;
}
inline size_t instanceSize(size_t extraBytes) const {
if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
return cache.fastInstanceSize(extraBytes);
}
size_t size = alignedInstanceSize() + extraBytes;
// CF requires all objects be at least 16 bytes.
if (size < 16) size = 16;
return size;
}
复制代码
根据if (size < 16) size = 16;
可以看出,对象最小大小为16,这个就是内存对齐的概念,上面的alignedInstanceSize()
函数,会继续调用内联函数word_align
// __LP64__
# define WORD_MASK 7UL
static inline uint32_t word_align(uint32_t x) {
return (x + WORD_MASK) & ~WORD_MASK;
}
复制代码
这里就引入一个概念就是字节对齐。可以看到WORD_MASK=7
,它的作用是保证字节的大小为8的倍数。
给对象分配内存空间
if (zone) {
obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
} else {
obj = (id)calloc(1, size);
}
复制代码
给对象关联isa指针
if (!zone && fast) {
obj->initInstanceIsa(cls, hasCxxDtor);
} else {
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
复制代码
总结
总结来看alloc
的流程图即为下图所示: