Cache_t的数据结构
1.下载objc818可调试源码
2.在main.m
文件添加如下代码:
#import <Foundation/Foundation.h>
@interface ABPerson : NSObject
@end
@implementation ABPerson
@end
int main(int argc, const char * argv[]) {
@autoreleasepool {
Class pClass = [ABPerson class];
NSLog(@"%@",pClass);
}
return 0;
}
复制代码
3.通过lldb
调试Cache_t
的数据结构
p/x pClass
获取类对象的首地址p/x 0x0000000100008498 + 0x10
首地址偏移16
个字节拿到cache_t
p (cache_t *)0x00000001000084a8
打印cache_t
地址p *$2
查看cache_t
结构
struct cache_t {
private:
explicit_atomic<uintptr_t> _bucketsAndMaybeMask; // 8
union {
struct {
explicit_atomic<mask_t> _maybeMask; // 4
#if __LP64__
uint16_t _flags; // 2
#endif
uint16_t _occupied; // 2
};
explicit_atomic<preopt_cache_t *> _originalPreoptCache; // 8
};
复制代码
能够发现打印出的结构与objc源码中cache_t
的结构相对应。
void cache_t::insert(SEL sel, IMP imp, id receiver)
{
省略部分代码
bucket_t *b = buckets();
mask_t m = capacity - 1;
mask_t begin = cache_hash(sel, m);
mask_t i = begin;
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot.
do {
if (fastpath(b[i].sel() == 0)) {
incrementOccupied();
b[i].set<Atomic, Encoded>(b, sel, imp, cls());
return;
}
if (b[i].sel() == sel) {
// The entry was added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
return;
}
} while (fastpath((i = cache_next(i, m)) != begin));
bad_cache(receiver, (SEL)sel);
#endif // !DEBUG_TASK_THREADS
}
复制代码
cache_t
中的insert
方法里面是将SEL
和IMP
用bucket_t
包装起来的。
struct bucket_t {
private:
// IMP-first is better for arm64e ptrauth and no worse for arm64.
// SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
explicit_atomic<uintptr_t> _imp;
explicit_atomic<SEL> _sel;
#else
explicit_atomic<SEL> _sel;
explicit_atomic<uintptr_t> _imp;
#endif
省略部分代码
}
复制代码
进一步说明了bucket_t
是包装SEL
和IMP
的。
Cache_t
的数据结构图
LLDB验证方法的存储
修改main.m
文件代码:
@interface ABPerson : NSObject
-(void)saySomething;
@end
@implementation ABPerson
-(void)saySomething
{
NSLog(@"saySomething");
}
@end
int main(int argc, const char * argv[]) {
@autoreleasepool {
ABPerson *p = [ABPerson alloc];
Class pClass = [ABPerson class];
NSLog(@"%@",pClass);
}
return 0;
}
复制代码
p/x pClass
获取类对象的首地址p/x 0x00000001000084b8 + 0x10
首地址偏移16
个字节拿到cache_t
p (cache_t *)0x00000001000084c8
打印cache_t
地址p *$2
查看cache_t
结构p [p saySomething]
调用一次方法,让其有缓存p $3.buckets()[4]
获取哈希表里的值,当前在4号位置有值p $4.imp(nil,pClass)
打印imp
小规模取样
1.参照objc_class
结构定义ab_objc_class
struct objc_class : objc_object {
省略部分代码
// Class ISA;
Class superclass;
cache_t cache; // formerly cache pointer and vtable
class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
省略部分代码
}
复制代码
struct ab_objc_class {
Class isa;
Class superclass;
struct ab_cache_t cache;
struct ab_class_data_bits_t bits;
};
复制代码
2.参照cache_t
定义ab_cache_t
struct cache_t {
private:
explicit_atomic<uintptr_t> _bucketsAndMaybeMask; // 8
union {
struct {
explicit_atomic<mask_t> _maybeMask; // 4
#if __LP64__
uint16_t _flags; // 2
#endif
uint16_t _occupied; // 2
};
explicit_atomic<preopt_cache_t *> _originalPreoptCache; // 8
};
省略部分代码
}
复制代码
typedef uint32_t mask_t;
struct ab_cache_t {
struct ab_bucket_t *_bukets; // 8
mask_t _maybeMask; // 4
uint16_t _flags; // 2
uint16_t _occupied; // 2
};
复制代码
3.参照class_data_bits_t
定义ab_class_data_bits_t
struct class_data_bits_t {
friend objc_class;
// Values are the FAST_ flags above.
uintptr_t bits;
省略部分代码
}
复制代码
struct ab_class_data_bits_t {
uintptr_t bits;
};
复制代码
4.参照bucket_t
定义ab_bucket_t
struct bucket_t {
private:
// IMP-first is better for arm64e ptrauth and no worse for arm64.
// SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
explicit_atomic<uintptr_t> _imp;
explicit_atomic<SEL> _sel;
#else
explicit_atomic<SEL> _sel;
explicit_atomic<uintptr_t> _imp;
#endif
省略部分代码
复制代码
struct ab_bucket_t {
SEL _sel;
IMP _imp;
};
复制代码
测试类ABPerson的定义
@interface ABPerson : NSObject
- (void)say1;
- (void)say2;
- (void)say3;
- (void)say4;
- (void)say5;
- (void)say6;
- (void)say7;
+ (void)sayHappy;
@end
复制代码
@implementation ABPerson
- (void)say1{
NSLog(@"ABPerson say : %s",__func__);
}
- (void)say2{
NSLog(@"ABPerson say : %s",__func__);
}
- (void)say3{
NSLog(@"ABPerson say : %s",__func__);
}
- (void)say4{
NSLog(@"ABPerson say : %s",__func__);
}
- (void)say5{
NSLog(@"ABPerson say : %s",__func__);
}
- (void)say6{
NSLog(@"ABPerson say : %s",__func__);
}
- (void)say7{
NSLog(@"ABPerson say : %s",__func__);
}
+ (void)sayHappy{
NSLog(@"ABPerson say : %s",__func__);
}
@end
复制代码
测试即输出:
int main(int argc, const char * argv[]) {
@autoreleasepool {
ABPerson *p = [ABPerson alloc];
Class pClass = p.class;
[p say1];
[p say2];
[p say3];
[pClass sayHappy];
struct ab_objc_class *ab_class = (__bridge struct ab_objc_class *)(pClass);
NSLog(@"%hu - %u",ab_class->cache._occupied,ab_class->cache._maybeMask);
for (mask_t i = 0; i<ab_class->cache._maybeMask; i++) {
struct ab_bucket_t bucket = ab_class->cache._bukets[i];
NSLog(@"%@ - %pf",NSStringFromSelector(bucket._sel),bucket._imp);
}
NSLog(@"Hello, World!");
}
return 0;
}
复制代码
没有报错,并且能够正常输出(输出结果后面还会分析到,这里先略过),说明小规模取样是可行的。
insert源码分析
void insert(SEL sel, IMP imp, id receiver);
复制代码
void cache_t::insert(SEL sel, IMP imp, id receiver)
{
省略部分代码
mask_t newOccupied = occupied() + 1; // 1+1
unsigned oldCapacity = capacity(), capacity = oldCapacity;
//首次是空的cache
if (slowpath(isConstantEmptyCache())) {
// Cache is read-only. Replace it.
// INIT_CACHE_SIZE_LOG2 = 2,
//INIT_CACHE_SIZE = (1 << INIT_CACHE_SIZE_LOG2),
//1左移两位就是4,INIT_CACHE_SIZE= 4
if (!capacity) capacity = INIT_CACHE_SIZE;//初始化容量为4
reallocate(oldCapacity, capacity, /* freeOld */false);
}
//cache_fill_ratio:capacity * 3 / 4; 如果小于等于当前容积的3/4,正常插入数据
else if (fastpath(newOccupied + CACHE_END_MARKER <= cache_fill_ratio(capacity))) {
// Cache is less than 3/4 or 7/8 full. Use it as-is.
}
#if CACHE_ALLOW_FULL_UTILIZATION
else if (capacity <= FULL_UTILIZATION_CACHE_SIZE && newOccupied + CACHE_END_MARKER <= capacity) {
// Allow 100% cache utilization for small buckets. Use it as-is.
}
#endif
else {
//如果大于当前容积的3/4,就进行容积的2倍扩容 :4*2 = 8
capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
if (capacity > MAX_CACHE_SIZE) {
capacity = MAX_CACHE_SIZE;
}
//分配内存
reallocate(oldCapacity, capacity, true);
}
bucket_t *b = buckets();
//capacity首次容量为4
mask_t m = capacity - 1; // 4-1=3 8-1 = 7
//通过cache_hash得到哈希地址
mask_t begin = cache_hash(sel, m);
mask_t i = begin;
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot.
do {
//sel首次加入进来
if (fastpath(b[i].sel() == 0)) {
incrementOccupied(); //occupied++;
//bucket插入sel和imp
b[i].set<Atomic, Encoded>(b, sel, imp, cls());
return;
}
//已存在sel就跳过
if (b[i].sel() == sel) {
// The entry was added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
return;
}
//cache_next: (i+1) & mask
} while (fastpath((i = cache_next(i, m)) != begin));
bad_cache(receiver, (SEL)sel);
#endif // !DEBUG_TASK_THREADS
}
复制代码
ALWAYS_INLINE
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
bucket_t *oldBuckets = buckets();
bucket_t *newBuckets = allocateBuckets(newCapacity);
// Cache's old contents are not propagated.
// This is thought to save cache memory at the cost of extra cache fills.
// fixme re-measure this
ASSERT(newCapacity > 0);
ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
//存储newBuckets指针
setBucketsAndMask(newBuckets, newCapacity - 1);
if (freeOld) {
//回收旧内存
collect_free(oldBuckets, oldCapacity);
}
}
复制代码
void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
#ifdef __arm__
mega_barrier();
//存储newBuckets指针
_bucketsAndMaybeMask.store((uintptr_t)newBuckets, memory_order_relaxed);
mega_barrier();
//存储newMask值
_maybeMask.store(newMask, memory_order_relaxed);
_occupied = 0;
#elif __x86_64__ || i386
// ensure other threads see buckets contents before buckets pointer
_bucketsAndMaybeMask.store((uintptr_t)newBuckets, memory_order_release);
// ensure other threads see new buckets before new mask
_maybeMask.store(newMask, memory_order_release);
_occupied = 0;
#else
#error Don't know how to do setBucketsAndMask on this architecture.
#endif
}
复制代码
小规模取样中调用了say1
、say2
、say3
,输出cache._occupied = 1
,cache._maybeMask = 7
。方法存储也不是按顺序存储的。
现在去掉一个,只调用say1
、say2
:
输出cache._occupied = 2
,cache._maybeMask = 3
。
根据上面分析的原理:
- 初始化容量为
4
,mask = capacity - 1
所以为cache._maybeMask = 3
,当前调用了2
个方法所以cache._occupied = 2
- 调用
3
个方法后:newOccupied = occupied() + 1
,即newOccupied = 3
newOccupied + CACHE_END_MARKER
= 3 + 1 = 4
> capacity * 3 / 4
= 3
,
扩容为2
倍的capacity
,即capacity = 2 * 4 = 8
,mask = capacity - 1
,
所以cache._maybeMask = 8 - 1 = 7
,又因为分配空间的时候,collect_free
回收旧的内存,之前的被清空,只有新的方法say3
加进去,所以cache._occupied = 1
。因为是哈希表存储的说以并不是从头开始纯粹的。
最后,附上插入分析图: