这是我参与更文挑战的第27天,活动详情查看: 更文挑战。
每一种编程语言,基本上都有数组这种数据类型。它不单单是一种数据类型,同时也是一个数据结构。
数组用一块连续的内存空间,来存储相同类型的一组数据,最大的特点就是支持随机访问,但插入、删除操作效率很低,平均时间复杂度未O(n)
1.数组如何实现随机访问
1.1 数组的特性
数组是一种线性表数据结构。用一组连续的内存空间,来存储相同类型的数据。
支持随机访问能力因为其有两个特性:
- 线性表,即数据排成像一条线一样的机构
- 连续的内存空间和相同类型的数据
1.2实现随机访问方式
我们拿一个长度为 10 的 int 类型的数组 int[] a = new int[10] 来举例。在我画的这个图中,计算机给数组 a[10],分配了一块连续内存空间 1000~1039,其中,内存块的首地址为 base_address = 1000。
我们知道,计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:
a[i]_address = base_address + i * data_type_size
复制代码
复制代码
其中 data_type_size 表示数组中每个元素的大小。我们举的这个例子里,数组中存储的是 int 类型数据,所以 data_type_size 就为 4 个字节。
2.低效的插入和删除
2.1 插入和删除涉及的操作
数组的插入和删除操作都可能会涉及其它数组元素的移动,这是造成低效的根本原因。
假设数组的长度为 n,现在,如果我们需要将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,我们需要将第 k~n 这部分的元素都顺序地往后挪一位。
如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为 O(1)。但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是 O(n)。 因为我们在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为 (1+2+…n)/n=O(n)。
2.2插入和删除特定情况下的优化
2.2.1 插入操作优化
如果数组中的数据是有序的,我们在某个位置插入一个新的元素时,就必须按照刚才的方法搬移 k 之后的数据。但是,如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数组插入到第 k 个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,直接将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。
为了更好地理解,我们举一个例子。假设数组 a[10] 中存储了如下 5 个元素:a,b,c,d,e。
我们现在需要将元素 x 插入到第 3 个位置。我们只需要将 c 放入到 a[5],将 a[2] 赋值为 x 即可。最后,数组中的元素如下: a,b,x,d,e,c。
利用这种处理技巧,在特定场景下,在第 k 个位置插入一个元素的时间复杂度就会降为 O(1)。这个处理思想在快排中也会用到
2.2.2 删除操作优化
跟插入数据类似,如果我们要删除第 k 个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。
和插入类似,如果删除数组末尾的数据,则最好情况时间复杂度为 O(1);如果删除开头的数据,则最坏情况时间复杂度为 O(n);平均情况时间复杂度也为 O(n)。
实际上,在某些特殊场景下,我们并不一定非得追求数组中数据的连续性。如果我们将多次删除操作集中在一起执行,删除的效率是不是会提高很多呢?
我们继续来看例子。数组 a[10] 中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,我们要依次删除 a,b,c 三个元素。
为了避免 d,e,f,g,h 这几个数据会被搬移三次,我们可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。
这样的操作类似于JVM标记清楚垃圾回收算法的核心思想
3.使用数组最常见的问题:数组越界
数组越界为访问数组时候越出了当初分配给数组的地址空间,C语言数组越界比较特殊,运行时不会提醒。其他语言,例如Java会抛出java.lang.ArrayIndexOutOfBoundsException异常。很多计算机病毒也正是利用到了代码中的数组越界可以访问非法地址的漏洞,来攻击系统,所以写代码的时候一定要警惕数组越界。
4.容器&&数组
ArrayList 最大的优势就是可以将很多数组操作的细节封装起来。比如前面提到的数组插入、删除数据时需要搬移其他数据等。另外,它还有一个优势,就是支持动态扩容,因为扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建 ArrayList 的时候事先指定数据大小。
数组本身在定义的时候需要预先指定大小,因为需要分配连续的内存空间。如果需要增加数组容量,只能重新分配一块更大的空间,将原来的数据复制过去,然后再插入新的数据。
使用数组和容器场景:
- Java ArrayList 无法存储基本类型,比如 int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。
- 如果数据大小事先已知,并且对数据的操作非常简单,用不到 ArrayList 提供的大部分方法,也可以直接使用数组。
- 如果要表示多维数组,用数组会更加直观。
对于业务开发,直接使用容器就足够了,省时省力。毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。但如果你是做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选。
5.数组索引要从0开始,而不是1
5.1特殊的内存模型
下标”最确切的定义应该是“偏移(offset)”。前面也讲到,如果用 a 来表示数组的首地址,a[0] 就是偏移为 0 的位置,也就是首地址,a[k] 就表示偏移 k 个 type_size 的位置,所以计算 a[k] 的内存地址只需要用这个公式:
a[k]_address = base_address + k * type_size
复制代码
但是,如果数组从 1 开始计数,那我们计算数组元素 a[k] 的内存地址就会变为:
a[k]_address = base_address + (k-1)*type_size
复制代码
对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。
数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从 1 开始。
5.2历史原因
C语言一开始即如此,其它语言效仿之,当然也有其他语言并不是,例如Matlab,Python。