前言
本篇记录探索objc_class
中成员变量cache
的数据结构,以及方法缓存的流程。
struct objc_class {
Class isa;
Class superclass;
cache_t cache;
class_data_bits_t bits;
.....
}
复制代码
cache_t的数据结构
找到源码中cache_t
的定义,先来看看cache_t
的成员变量。
typedef uint32_t mask_t;
struct cache_t {
explicit_atomic<uintptr_t> _bucketsAndMaybeMask;
union {
struct {
explicit_atomic<mask_t> _maybeMask;
#if __LP64__
uint16_t _flags;
#endif
uint16_t _occupied;
};
explicit_atomic<preopt_cache_t *> _originalPreoptCache;
};
.....
void incrementOccupied();
void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
void reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld);
unsigned capacity() const;
struct bucket_t *buckets() const;
Class cls() const;
void insert(SEL sel, IMP imp, id receiver);
}
复制代码
__LP64__
表示在64位系统下
cache_t
有两个成员变量,源码中没有相关字段的注释,很难知道每个字段存的是啥。
bucket_t *buckets()
方法中返回bucket_t
的指针,看看bucket_t
这个结构体
struct bucket_t {
private:
// IMP-first is better for arm64e ptrauth and no worse for arm64.
// SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
explicit_atomic<uintptr_t> _imp;
explicit_atomic<SEL> _sel;
#else
explicit_atomic<SEL> _sel;
explicit_atomic<uintptr_t> _imp;
#endif
......
}
复制代码
bucket_t
存储了方法的SEL
和IMP
.
用LLDB调试到SEL 和 IMP
定义一个Person
类,并定义多个方法,如下
@interface Person : NSObject
-(void)func1;
-(void)func2;
-(void)func3;
-(void)func4;
-(void)func5;
-(void)func6;
@end
复制代码
int main() {
@autoreleasepool {
Person *p = [Person alloc];
[p func1];
[p func2];
[p func3];
[p func4];
[p func5];
}
return 0;
}
复制代码
将断点设在[p func2]
,此时已调用过func1
方法,通过lldb
打印此时的cache
(lldb) p/x [Person class] ->获取类对象的地址
(Class) $1 = 0x0000000100008370 Person
(lldb) p (cache_t *)0x0000000100008380 ->地址偏移0x10
(cache_t *) $2 = 0x0000000100008380
(lldb) p *$2 ->打印此时的cache
(cache_t) $3 = {
_bucketsAndMaybeMask = {
std::__1::atomic<unsigned long> = {
Value = 4301326736
}
}
= {
= {
_maybeMask = {
std::__1::atomic<unsigned int> = {
Value = 3
}
}
_flags = 32784
_occupied = 1
}
_originalPreoptCache = {
std::__1::atomic<preopt_cache_t *> = {
Value = 0x0001801000000003
}
}
}
}
复制代码
调用buckets()
方法:
(lldb) p $3.buckets() //调用buckets()
(bucket_t *) $4 = 0x0000000100610990
(lldb) p *$4
(bucket_t) $5 = {
_sel = {
std::__1::atomic<objc_selector *> = "" {
Value = ""
}
}
_imp = {
std::__1::atomic<unsigned long> = {
Value = 48656
}
}
}
(lldb) p $5.sel() //调用bucket_t的sel()
(SEL) $6 = "func1"
(lldb) p $5.imp(nil, [Person class]) //调用bucket_t的imp()
(IMP) $7 = 0x0000000100003d60 (KCObjcBuild`-[Person func1])
复制代码
此时大概可以得出如下图的所示的结构图,但是cache_t
是如何存放bucket_t
还不得而知。
insert的流程
首次缓存方法
定位到关键方法insert
,接着分析该方法的流程。
重新运行代码,设置断点在insert
,在调用func1
前断下,此时cache
中还没缓存任何方法
mask_t cache_t::occupied() const
{
return _occupied;
}
mask_t cache_t::mask() const
{
return _maybeMask.load(memory_order_relaxed);
}
unsigned cache_t::capacity() const
{
return mask() ? mask()+1 : 0;
}
bool cache_t::isConstantEmptyCache() const
{
return occupied() == 0 &&
buckets() == emptyBucketsForCapacity(capacity(), false);
}
void cache_t::insert(SEL sel, IMP imp, id receiver)
{
runtimeLock.assertLocked();
......
//获取_occupied,初始值为0,表示当前的缓存方法的个数,
mask_t newOccupied = occupied() + 1; // 1
//获取_maybeMask,不为0值为_maybeMask + 1,否则为0
unsigned oldCapacity = capacity(), capacity = oldCapacity;// 0
......
}
复制代码
此时cache
还未缓存方法,进入下面的if
分支
void cache_t::insert(SEL sel, IMP imp, id receiver){
......
if (slowpath(isConstantEmptyCache())) {
//INIT_CACHE_SIZE = 1 << 2 = 4
if (!capacity) capacity = INIT_CACHE_SIZE;
//调用reallocate来开辟内存
reallocate(oldCapacity, capacity, /* freeOld */false);
}
else if (fastpath(newOccupied + CACHE_END_MARKER <= cache_fill_ratio(capacity))) {
// Cache is less than 3/4 or 7/8 full. Use it as-is.
}
#if CACHE_ALLOW_FULL_UTILIZATION
else if (capacity <= FULL_UTILIZATION_CACHE_SIZE && newOccupied + CACHE_END_MARKER <= capacity) {
// Allow 100% cache utilization for small buckets. Use it as-is.
}
#endif
else {
capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
if (capacity > MAX_CACHE_SIZE) {
capacity = MAX_CACHE_SIZE;
}
reallocate(oldCapacity, capacity, true);
}
......
}
复制代码
开辟内存
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
bucket_t *oldBuckets = buckets();
//开辟内存
bucket_t *newBuckets = allocateBuckets(newCapacity);
ASSERT(newCapacity > 0);
ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
// mask和buckets 赋值, mask 为 4 - 1
setBucketsAndMask(newBuckets, newCapacity - 1);
//释放原来的oldBuckets,此时还没有缓存,freeOld为false
if (freeOld) {
collect_free(oldBuckets, oldCapacity);
}
}
复制代码
源码的注释提到会给最后的位置会占位用来标记列表的结尾,所以_maybeMask
为capacity - 1
,表示当前最多存放方法的个数
bucket_t *cache_t::endMarker(struct bucket_t *b, uint32_t cap)
{
return (bucket_t *)((uintptr_t)b + bytesForCapacity(cap)) - 1;
}
bucket_t *cache_t::allocateBuckets(mask_t newCapacity)
{
// Allocate one extra bucket to mark the end of the list.
// This can't overflow mask_t because newCapacity is a power of 2.
//开辟newCapacity个bucket_t大小的内存空间,当前newCapacity = 4
bucket_t *newBuckets = (bucket_t *)calloc(bytesForCapacity(newCapacity), 1);
//通过内存平移取到最后的一个 bucket_t的地址
bucket_t *end = endMarker(newBuckets, newCapacity);
// 设置结束的标记
#if __arm__
// End marker's sel is 1 and imp points BEFORE the first bucket.
// This saves an instruction in objc_msgSend.
end->set<NotAtomic, Raw>(newBuckets, (SEL)(uintptr_t)1, (IMP)(newBuckets - 1), nil);
#else
// End marker's sel is 1 and imp points to the first bucket.
end->set<NotAtomic, Raw>(newBuckets, (SEL)(uintptr_t)1, (IMP)newBuckets, nil);
#endif
if (PrintCaches) recordNewCache(newCapacity);
return newBuckets;
}
复制代码
方法缓存
insert
流程继续往下走
static constexpr uintptr_t bucketsMask = ~0ul;
struct bucket_t *cache_t::buckets() const
{
uintptr_t addr = _bucketsAndMaybeMask.load(memory_order_relaxed);
return (bucket_t *)(addr & bucketsMask);
}
//------------------------
// 哈希函数
static inline mask_t cache_hash(SEL sel, mask_t mask)
{
uintptr_t value = (uintptr_t)sel;
#if CONFIG_USE_PREOPT_CACHES
value ^= value >> 7;
#endif
return (mask_t)(value & mask);
}
//------------------------
void cache_t::incrementOccupied()
{
_occupied++;
}
//------------------------
// mac x86 环境下
//哈希冲突处理,
static inline mask_t cache_next(mask_t i, mask_t mask) {
return (i+1) & mask;
}
void cache_t::insert(SEL sel, IMP imp, id receiver){
......
bucket_t *b = buckets();
mask_t m = capacity - 1; // 4 - 1 = 3
//哈希函数拿到存放的位置
mask_t begin = cache_hash(sel, m);
mask_t i = begin;
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot.
// 扫描一个空的位置存放方法
do {
//sel() == 0 说明该位置还未使用,
if (fastpath(b[i].sel() == 0)) {
//occupied + 1
incrementOccupied();
//将方法存到该位置
b[i].set<Atomic, Encoded>(b, sel, imp, cls());
return;
}
//sel() == sel 方法已被缓存
if (b[i].sel() == sel) {
// The entry was added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
return;
}
} while (fastpath((i = cache_next(i, m)) != begin));// cache_next获取下一个位置,直到 i == begin, 退出循环
bad_cache(receiver, (SEL)sel);
}
复制代码
buckets扩容
buckets
首次只开辟了4个空间,必然会有存不下的情况,回到insert
前面的部分
#define CACHE_END_MARKER 1
// Historical fill ratio of 75% (since the new objc runtime was introduced).
static inline mask_t cache_fill_ratio(mask_t capacity) {
return capacity * 3 / 4;
}
void cache_t::insert(SEL sel, IMP imp, id receiver)
{
......
if (slowpath(isConstantEmptyCache())) {
......
}
//cache_fill_ratio(capacity) = 4 * 3 / 4 = 3
// newOccupied + 1 <= 3才能存,也就是4个空间存放2个方法之后就需要扩容了
else if (fastpath(newOccupied + CACHE_END_MARKER <= cache_fill_ratio(capacity))) {
// Cache is less than 3/4 or 7/8 full. Use it as-is.
}
#if CACHE_ALLOW_FULL_UTILIZATION
else if (capacity <= FULL_UTILIZATION_CACHE_SIZE && newOccupied + CACHE_END_MARKER <= capacity) {
// Allow 100% cache utilization for small buckets. Use it as-is.
}
#endif
// 需要扩充
else {
// 将capacity扩大一倍,当最大不超过1<<16的大小
capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
if (capacity > MAX_CACHE_SIZE) {
capacity = MAX_CACHE_SIZE;
}
// 重新开辟空间,并释放之前的空间,考虑到效率会放弃之前缓存的方法
reallocate(oldCapacity, capacity, true);
}
......
}
复制代码
总结
- 方法是缓存在散列表中
- occupied为当前缓存方法的个数
- _maybeMask + 1为当前散列表的大小
- 当 occupied + 2 > capacity * 3 / 4为扩容的时机
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END