多标签分类中的损失函数与评价指标

1 引言

各位朋友大家好,欢迎来到月来客栈。在前面的一篇文章[1]中笔者介绍了在单标签分类问题中模型损失的度量方法,即交叉熵损失函数。同时也介绍了多分类任务中常见的评价指标及其实现方法[2]。在接下来的这篇文章中,笔者将会详细介绍在多标签分类任务中两种常见的损失评估方法,以及在多标签分类场景中的模型评价指标。

2 方法一

将原始输出层的softmax操作替换为simoid操作,然后通过计算输出层与标签之间的sigmoid交叉熵来作为误差的衡量标准,具体计算公式如下:

loss(y,y^)=1Ci=1m[y(i)log(11+exp(y^(i)))+(1y(i))log(exp(y^(i))1+exp(y^(i)))]          (1)loss(y,\hat{y})=-\frac{1}{C} \sum_{i=1}^m\left[y^{(i)}\cdot\log\left(\frac{1}{1+\exp(-\hat{y}^{(i)})}\right)+\left(1-y^{(i)}\right)\cdot\log\left(\frac{\exp(-\hat{y}^{(i)})}{1+\exp(-\hat{y}^{(i)})}\right)\right]\;\;\;\;\;(1)

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享