CIFAR-10数据集应用:快速入门数据增强方法Mixup,显著提升图像识别准确度

作者|Ta-Ying Cheng,牛津大学博士研究生,Medium技术博主,多篇文章均被平台官方刊物Towards Data Science收录

翻译|颂贤

深度学习蓬勃发展的这几年来,图像分类一直是最为火热的领域之一。传统上的图像识别严重依赖像是扩张/侵蚀或者是频域变换这样的处理方法,但特征提取的困难性限制了这些方法的进步空间。

如今的神经网络则显著提高了图像识别的准确率,因为神经网络能够寻找输入图像和输出标签之间的关系,并以此不断地调整它的识别策略。

然而,神经网络往往需要大量的数据进行训练,而优质的训练数据并不是唾手可得的。因此现在许多人都在研究如何能够实现所谓的数据增强(Data augmentation) ,即在一个已有的小数据集中凭空增加数据量,来达到以一敌百的效果。

本文就将带大家认识一种简单而有效的数据增强策略Mixup,并介绍直接在PyTorch中实现Mixup的方法。

为什么需要数据增强?

神经网络架构内的参数是根据给定的数据进行训练和更新的。但由于训练数据只覆盖了某一部分可能数据的分布情况,网络很可能就会在分布的“能见”部分过度拟合。

因此,我们拥有的训练数据越多,理论上就越能覆盖整个分布的情况,这也正是为什么以数据为中心的AI(data-centric AI)非常重要。当然,在数据量有限的情况下,我们也并不是没有办法。通过数据增强,我们就可以尝试通过微调原有数据的方式产生新数据,并将其作为“新”样本送入网络进行训练。

什么是Mixup?

img

图1:Mixup的简易演示图

假设我们现在要做的事情是给猫和狗的图片做分类,并且我们已经有了一组标注好了是猫是狗的数据(例如[1, 0] -> 狗, [0, 1] -> 猫),那么Mixup简单来说就是将两张图像及其标签平均化为一个新数据。

具体而言,我们可以用数学公式写出Mixup的概念:

x=λxi+(1λ)(xj),y=λyi+(1λ)(yj),x = \lambda x_i + ( 1 – \lambda ) (x_j),\\ y = \lambda y_i + ( 1 – \lambda ) (y_j),

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享