这是我参与8月更文挑战的第23天,活动详情查看:8月更文挑战
Notes of Andrew Ng’s Machine Learning —— (5) Octave Tutorial
GNU Octave 是一种采用高级编程语言的主要用于数值分析的软件。Octave有助于以数值方式解决线性和非线性问题,并使用与MATLAB兼容的语言进行其他数值实验。它也可以作为面向批处理的语言使用。因为它是GNU计划的一部分,所以它是GNU通用公共许可证条款下的自由软件。
Octave 是 MATLAB 的主要自由替代品之一。
—— Wikipedia
Octave 官网:www.gnu.org/software/oc…
官网给出的定义:Scientific Programming Language
- Powerful mathematics-oriented syntax with built-in 2D/3D plotting and visualization tools
- Free software, runs on GNU/Linux, macOS, BSD, and Microsoft Windows
- Drop-in compatible with many Matlab scripts
Basic Operations
Elementary Operations
+
, -
, *
, /
, ^
.
>> 5 + 6
ans = 11
>> 20 - 1
ans = 19
>> 3 * 4
ans = 12
>> 8 / 2
ans = 4
>> 2 ^ 8
ans = 256
复制代码
Logical Operations
==
, ~=
, &&
, ||
, xor()
.
Note that a not equal sign is ~=
, and not !=
.
>> 1 == 0
ans = 0
>> 1 ~= 0
ans = 1
>> 1 && 0
ans = 0
>> 1 || 0
ans = 1
>> xor(1, 0)
ans = 1
复制代码
Change the Prompt
We can change the prompt via PS1()
:
>> PS1("octave: > ")
octave: > PS1(">> ")
>> PS1("octave: > ")
octave: > PS1("SOMETHING > ")
SOMETHING > PS1(">> ")
>> % Prompt changed
复制代码
Variables
>> a = 3
a = 3
>> a = 3; % semicolon supressing output
>> c = (3 >= 1);
>> c
c = 1
复制代码
Display variables
>> a = pi;
>> a
a = 3.1416
>> disp(a)
3.1416
>> disp(sprintf('2 decimals: %0.2f', a))
2 decimals: 3.14
复制代码
We can also set the default length of decimal places by entering format short/long
:
>> a
a = 3.1416
>> format long
>> a
a = 3.141592653589793
>> format short
>> a
a = 3.1416
复制代码
Create Matrices
>> A = [1, 2, 3; 4, 5, 6]
A =
1 2 3
4 5 6
>> B = [1 3 5; 7 9 11]
B =
1 3 5
7 9 11
>> B = [1, 2, 3;
> 4, 5, 6;
> 7, 8, 9]
B =
1 2 3
4 5 6
7 8 9
>> C = [1, 2, 4, 8]
C =
1 2 4 8
>> D = [1; 2; 3; 4]
D =
1
2
3
4
复制代码
There are some useful methods to generate matrices:
- Generate vector of a range
>> v = 1:10 % start:end
v =
1 2 3 4 5 6 7 8 9 10
>> v = 1:0.1:2 % start:step:end
v =
Columns 1 through 8:
1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000
Columns 9 through 11:
1.8000 1.9000
复制代码
- Generate matrices of all ones/zeros
>> ones(2, 3)
ans =
1 1 1
1 1 1
>> zeros(3, 2)
ans =
0 0
0 0
0 0
>> C = 2 * ones(4, 5)
C =
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
复制代码
- Generate identity matrices
>> eye(3)
ans =
Diagonal Matrix
1 0 0
0 1 0
0 0 1
复制代码
- Generate matrices of random values
Uniform distribution between 0 and 1:
>> D = rand(1, 3)
D =
0.14117 0.81424 0.83745
复制代码
Gaussian random:
>> D = randn(1, 3)
D =
0.22133 -2.00002 1.61025
复制代码
We can generate a gaussian random vector with 10000 elements, and plot a histogram:
>> randn(1, 10000);
>> hist(w)
复制代码
Output figure:
We can also plot a histogram with more buckets, 50 bins for example:
>> hist(w, 50)
复制代码
Get Help
>> help
For help with individual commands and functions type
help NAME
......
>> help eye
'eye' is a built-in function from the file libinterp/corefcn/data.cc
......
>> help help
......
复制代码
Moving Data Around
Size of matrix
size()
: get the size of a matrix, return [rows, columns]
.
>> A = [1, 2; 3, 4; 5, 6]
A =
1 2
3 4
5 6
>> size(A) % get the size of A
ans =
3 2
>> sz = size(A); % actually, size return a 1x2 matrix
>> size(sz)
ans =
1 2
>> size(A, 1) % get the first dimension of A (i.e. the number of rows)
ans = 3
>> size(A, 2) % the number of columns
ans = 2
复制代码
length()
: return the size of the longest dimension.
>> length(A) % get the size of the longest dimension. Confusing, not recommend
ans = 3
>> v = [1, 2, 3, 4];
>> length(v) % We often length() to get the length of a vector
ans = 4
复制代码
Load data
We can use basic shell commands to find data that we want.
>> pwd
ans = /Users/c
>> cd MyProg/octave/
>> pwd
ans = /Users/c/MyProg/octave
>> ls
featureX.dat featureY.dat
>> ls -l
total 16
-rw-r--r-- 1 c staff 188 Sep 8 10:00 featureX.dat
-rw-r--r-- 1 c staff 135 Sep 8 10:00 featureY.dat
复制代码
load
command can load data from a file.
>> load featureX.dat
>> load('featureY.dat')
复制代码
The data from file is now comed into matrices after load
>> featureX
featureX =
2104 3
1600 3
2400 3
1416 2
......
>> size(featureX)
ans =
27 2
复制代码
Show variables
who/whos
: show variables in memory currently.
>> who
Variables in the current scope:
A ans featureX featureY sz v w
>> whos % for more details
Variables in the current scope:
Attr Name Size Bytes Class
==== ==== ==== ===== =====
A 3x2 48 double
ans 1x2 16 double
featureX 27x2 432 double
featureY 27x1 216 double
sz 1x2 16 double
v 1x4 32 double
w 1x10000 80000 double
Total is 10095 elements using 80760 bytes
复制代码
Clear variables
clear
command can help us to clear variables that are no longer useful.
>> who
Variables in the current scope:
A ans featureX featureY sz v w
>> clear A % clear a variable
>> clear sz v w % clear variables
>> whos
Variables in the current scope:
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x2 16 double
featureX 27x2 432 double
featureY 27x1 216 double
Total is 83 elements using 664 bytes
>> clear % clear all variables
>> whos
>>
复制代码
Save data
Take a part of a vector.
>> v = featureY(1:5)
v =
3999
3299
3690
2320
5399
>> whos
Variables in the current scope:
Attr Name Size Bytes Class
==== ==== ==== ===== =====
featureX 27x2 432 double
featureY 27x1 216 double
v 5x1 40 double
Total is 86 elements using 688 bytes
复制代码
Save data to disk: save file_name variable [-ascii]
>> save hello.mat v % save as a binary format
>> ls
featureX.dat featureY.dat hello.mat
>> save hello.txt v -ascii; % save as a ascii txt
>>
复制代码
Then we can clear it from memory and load v back from disk:
>> clear v
>> whos
Variables in the current scope:
Attr Name Size Bytes Class
==== ==== ==== ===== =====
featureX 27x2 432 double
featureY 27x1 216 double
Total is 81 elements using 648 bytes
>> load hello.mat
>> whos
Variables in the current scope:
Attr Name Size Bytes Class
==== ==== ==== ===== =====
featureX 27x2 432 double
featureY 27x1 216 double
v 5x1 40 double
Total is 86 elements using 688 bytes
>>
复制代码
Manipulate data
Get element from a matrix:
>> A = [1, 2; 3, 4; 5, 6]
A =
1 2
3 4
5 6
>> A(3, 2) % get a element of matrix
ans = 6
>> A(2, :) % ":" means every element along that row/column
ans =
3 4
>> A(:, 1)
ans =
1
3
5
>> A([1, 3], :) % get the elements along row 1 & 3
ans =
1 2
5 6
复制代码
Change the elements of a matrix:
>> A = [1, 2; 3, 4; 5, 6]
A =
1 2
3 4
5 6
>> A(:, 2) = [10, 11, 12]
A =
1 10
3 11
5 12
>> A(1, 1) = 0
A =
0 10
3 11
5 12
>> A = [A, [100; 101; 102]] % append another column vector to right
A =
0 10 100
3 11 101
5 12 102
>> A = [1, 2; 3, 4; 5, 6]
A =
1 2
3 4
5 6
>> B = A + 10
B =
11 12
13 14
15 16
>> C = [A, B]
C =
1 2 11 12
3 4 13 14
5 6 15 16
>> D = [A; B];
>> size(D)
ans =
6 2
复制代码
Put all elements of a matrix into a single column vector:
>> A
A =
0 10 100
3 11 101
5 12 102
>> A(:) % put all elements of A into a single vector
ans =
0
3
5
10
11
12
100
101
102
复制代码
Computing on Data
Element-wise operations
Use .<operator>
instead of <operator>
for element-wise operations (i.e. operations between elements).
>> A = [1, 2; 3, 4; 5, 6];
>> B = [11, 12; 13, 14; 15, 16];
>> C = [1 1; 2 2];
>> v = [1, 2, 3];
>> A .* B % element-wise multiplication (ans = [A(1,1)*B(1,1), A(1,2)*B(1,2); ...])
ans =
11 24
39 56
75 96
>> A .^ 2 % squaring each element of A
ans =
1 4
9 16
25 36
>> 1 ./ A
ans =
1.00000 0.50000
0.33333 0.25000
0.20000 0.16667
>> v .+ 1 % equals to `v + 1` & `v + ones(1, length(v))`
ans =
2 3 4
复制代码
Element-wise comparison:
>> a
a =
1.00000 15.00000 2.00000 0.50000
>> a < 3
ans =
1 0 1 1
>> find(a < 3) % to find the elements that are less then 3 in a, return their indices
ans =
1 3 4
>> A
A =
1 2
3 4
5 6
>> [r, c] = find(A < 3)
r =
1
1
c =
1
2
复制代码
Functions are element-wise:
>> v = [1, 2, 3]
v =
1 2 3
>> log(v)
ans =
0.00000 0.69315 1.09861
>> exp(v)
ans =
2.7183 7.3891 20.0855
>> abs([-1, 2, -3, 4])
ans =
1 2 3 4
>> -v % -1 * v
ans =
-1 -2 -3
复制代码
Floor and Ceil of elements:
>> a
a =
1.00000 15.00000 2.00000 0.50000
>> floor(a)
ans =
1 15 2 0
>> ceil(a)
ans =
1 15 2 1
复制代码
Matrix operations
Matrix multiplication:
>> A = [1, 2; 3, 4; 5, 6];
>> C = [1 1; 2 2];
>> A * C % matrix multiplication
ans =
5 5
11 11
17 17
复制代码
Transpose:
>> A = [1, 2; 3, 4; 5, 6];
>> A' % transposed
ans =
1 3 5
2 4 6
复制代码
Get the max element of a vector | matrix:
>> a = [1 15 2 0.5];
>> A = [1, 2; 3, 4; 5, 6];
>> max_val = max(a)
max_val = 15
>> [val, index] = max(a)
val = 15
index = 2
>> max(A) % `max(<Matrix>)` does a column-wise maximum
ans =
5 6
>> max(A, [], 1) % max per column
ans =
5 6
>> max(A, [], 2) % max per row
ans =
2
4
6
>> max(max(A)) % the max element of whole matrix
ans = 6
>> max(A(:))
ans = 6
复制代码
Sum & prod of vector:
>> a
a =
1.00000 15.00000 2.00000 0.50000
>> A
A =
1 2
3 4
5 6
>> sum(a)
ans = 18.500
>> sum(A)
ans =
9 12
>> sum(A, 1)
ans =
9 12
>> sum(A, 2)
ans =
3
7
11
>> prod(a)
ans = 15
>> prod(A)
ans =
15 48
复制代码
Get the diagonal elements:
>> A = magic(4)
A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> A .* eye(4)
ans =
16 0 0 0
0 11 0 0
0 0 6 0
0 0 0 1
>> sum(A .* eye(4))
ans =
16 11 6 1
>> flipud(eye(4)) % flip up down
ans =
Permutation Matrix
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
>> sum(A .* flipud(eye(4)))
ans =
4 7 10 13
复制代码
Inverse:
>> A = magic(3)
A =
8 1 6
3 5 7
4 9 2
>> pinv(A)
ans =
0.147222 -0.144444 0.063889
-0.061111 0.022222 0.105556
-0.019444 0.188889 -0.102778
>> pinv(A) * A % get identity matrix
ans =
1.0000e+00 2.0817e-16 -3.1641e-15
-6.1062e-15 1.0000e+00 6.2450e-15
3.0531e-15 4.1633e-17 1.0000e+00
复制代码
Plotting Data
Plotting a function
>> clear
>> t = [0:0.01:0.98];
>> size(t)
ans =
1 99
>> y1 = sin(2*pi*4*t);
>> plot(t, y1);
复制代码
It will show you a figure like this:
>> y2 = cos(2*pi*4*t);
>> plot(t, y2);
复制代码
? This will replace the sin figure with a new cos figure.
If we want to have both the sin and cos plots, the hold on
command will help:
>> plot(t, y1);
>> hold on;
>> plot(t, y2, 'r');
复制代码
We can set some text on thw figure:
>> xlabel("time");
>> ylabel("value");
>> legend('sin', 'cos'); % Show what the 2 lines are
>> title('my plot');
复制代码
Now, we get this:
Then, we save it and close the plotting window:
>> print -dpng 'myPlot.png' % save it to $(pwd)
>> close
复制代码
We can show two figures at the same time:
>> figure(1); plot(t, y1);
>> figure(2); plot(t, y2);
复制代码
Then, we can also generate figures like this:
What we need to do is using a subplot
:
>> subplot(1, 2, 1); % Divides plot a 1x2 grid, access first element
>> plot(t, y1);
>> subplot(1, 2, 2);
>> plot(t, y2);
>> axis([0.5, 1, -1, 1]) % change the range of axis
复制代码
Use clf
to clear a figure:
>> clf;
复制代码
Showing a matrix
>> A = magic(5)
A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
>> imagesc(A), colorbar
复制代码
It gives us a figure like this:
The different colors correspond to the different values.
Another example:
>> B = magic(10);
>> imagesc(B), colorbar, colormap gray;
复制代码
Output:
Contriol Statements
for
>> v = zeros(10, 1)
v =
0
0
0
0
0
0
0
0
0
0
>> for i = 1: 10,
> v(i) = 2^i;
> end;
>> v'
ans =
2 4 8 16 32 64 128 256 512 1024
复制代码
while
>> i = 1;
>> while i <= 5,
> v(i) = 100;
> i = i + 1;
> end;
>> v'
ans =
100 100 100 100 100 64 128 256 512 1024
复制代码
if
>> for i = 1: 10,
> if v(i) > 100,
> disp(v(i));
> end;
> end;
128
256
512
1024
复制代码
Or, we can program like this,
x = 1;
if (x == 1)
disp ("one");
elseif (x == 2)
disp ("two");
else
disp ("not one or two");
endif
复制代码
break
& continue
i = 1;
while true,
v(i) = 999;
i = i + 1;
if i == 6,
break;
end;
end;
复制代码
Output:
v =
999
999
999
999
999
64
128
256
512
1024
复制代码
Function
Create a Function
To create a function, type the function code in a text editor (e.g. gedit or notepad), and save the file as functionName.m
Example function:
function y = squareThisNumber(x)
y = x^2;
复制代码
To call this function in Octave, do either:
cd
to the directory of the functionName.m file and call the function:
% Navigate to directory:
cd /path/to/function
% Call the function:
functionName(args)
复制代码
- Add the directory of the function file to the load path:
% To add the path for the current session of Octave:
addpath('/path/to/function/')
% To remember the path for future sessions of Octave, after executing addpath above, also do:
savepath
复制代码
Function with multiple return values
Octave’s functions can return more than one value:
function [square, cube] = squareAndCubeThisNumber(x)
square = x^2;
cube = x^3;
复制代码
>> [s, c] = squareAndCubeThisNumber(5)
s = 25
c = 125
复制代码
Practice
Let’s say I have a data set that looks like this, with data points at (1, 1)
, (2, 2)
, (3, 3)
. And what I’d like to do is to define an octave function to compute the cost function J of theta for different values of theta.
First, put the data into octave:
X = [1, 1; 1, 2; 1, 3] % Design matrix
y = [1; 2; 3]
theta = [0; 1]
复制代码
Output:
X =
1 1
1 2
1 3
y =
1
2
3
theta =
0
1
复制代码
Then define the cost function:
% costFunctionJ.m
function J = costFunctionJ(X, y, theta)
% X is the *design matrix* containing our training examples.
% y is the class labels
m = size(X, 1); % number of training examples
predictions = X * theta; % predictions of hypothesis on all m examples
sqrErrors = (predictions - y) .^ 2; % squared erroes
J = 1 / (2*m) * sum(sqrErrors);
复制代码
Now, use the costFunctionJ:
>> j = costFunctionJ(X, y, theta)
j = 0
复制代码
Got j = 0
because we set theta as [0; 1]
which is fitting our data set perfectly.
Vectorization
Vectorization is the process of taking code that relies on loops and converting it into matrix operations. It is more efficient, more elegant, and more concise.
As an example, let’s compute our prediction from a hypothesis. Theta is the vector of fields for the hypothesis and x is a vector of variables.
With loops:
prediction = 0.0;
for j = 1:n+1,
prediction += theta(j) * x(j);
end;
复制代码
With vectorization:
prediction = theta' * x;
复制代码
If you recall the definition multiplying vectors, you’ll see that this one operation does the element-wise multiplication and overall sum in a very concise notation.