HashMap源码解析(JDK1.8)
HashMap是一个数组+链表(或者红黑树)实现的散列表,这里注意是JDK1.8之后,JDK1.8之前是数组+链表实现的
同样我们还是先上类的关系图
从类的关系图中可以看出LinkedList继承一个抽象类和实现了三个接口,然后分别简单介绍一下:
- AbstractMap:这里主要提供iterator迭代器的相关操作
- Map:提供散列表的增删改查、迭代器遍历等操作
- Cloneable:按字段复制操作
- Serializable:启用其序列化功能操作
属性
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;
复制代码
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;//默认初始容量16,二进制1左移4位,就是4个2相乘
static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量,二进制1左移30位
static final float DEFAULT_LOAD_FACTOR = 0.75f;//构造函数中未指定时使用的负载因子
static final int TREEIFY_THRESHOLD = 8;//使用树而不是列表的箱子计数阈值8,如果链表长度 > 8,则将链表转换为红黑树
static final int UNTREEIFY_THRESHOLD = 6;//使用列表而不是树的箱子计数阈值6,如果红黑树内的数量 < 6时,则红黑树转换为链表
static final int MIN_TREEIFY_CAPACITY = 64;//使用最小树形化容量阈值64,如果当哈希表中的容量 >
64时,才允许树形化链表(即将链表转换成红黑树),否则,若桶内元素太多时,则直接扩容,而不是树形化
构造方法
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
复制代码
从四个构造方法中可以看出主要是initialCapacity、loadFactor、threshold这三个的不同参数。还有一个特殊的m直接传数据的构造方法,我们来一一接下来参数的神秘面纱:
initialCapacity:初始容量,默认值采用的是16,JDK1.8之后HashMap虽然采用来数组+链表(或者红黑树)实现的,但是整个开始还是从数组开始的,我们知道数组是有一个初始化容量的,当存储的数据越来越多的时候,我们就必须要进行扩容操作。而为了避免不必要的扩容操作,提升效率,选择一个合适的初始容量就是重中之重。
loadFactor:负载因子,默认值采用的是0.75,当负载因子较大时,去给table数组扩容的可能性就会少,所以相对占用内存较少(空间上较少),但是每条entry链上的元素会相对较多,查询的时间也会增长(时间上较多)。反之就是,负载因子较少的时候,给table数组扩容的可能性就高,那么内存空间占用就多,但是entry链上的元素就会相对较少,查出的时间也会减少。所以才有了负载因子是时间和空间上的一种折中的说法。所以设置负载因子的时候要考虑自己追求的是时间还是空间上的少。
- threshold:HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * loadfactor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。
Float.isNaN()方法分析
public static boolean isNaN(float v) {
return (v != v);
}
复制代码
如果指定的数v不是数字(NAN=Not a Number,即不是一个数字)的值方法返回true,否则返回false。该参数v是要测试的值。
tableSizeFor方法分析
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
复制代码
n转化为二进制做右移动多少位,然后再和之前的n做或运算,一直到右移16位做完或运算,然后做了两个三元运算符的计算,(n < 0) ? 1 : (n >= MAXIMUM_CAPACITY)判断得到的值再做value?
MAXIMUM_CAPACITY : n + 1运算,其实就是找到大于或等于cap的最小2的幂。构造方法及其相关的分析好了,现在正式进入HashMap的增删改查源码分析中
增删改查
HashMap中的节点
HashMap中的节点对象是一个存储hash值,key,value以及下一个节点
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
复制代码
插入元素/更新元素
HashMap中,put方法的逻辑是最复杂的,我们来一步一步揭开神秘面纱
public V put(K key, V value) {
//hash方法下面分析
return putVal(hash(key), key, value, false, true);
}
//真正的方法是putVal
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//tab如果没有初始化,则进行tab数组的初始化,并赋值初始容量,计算阈值,resize这个方法在下面我们也会来分析一下的
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果下标i(i是通过hash值计算得到的)位置的节点为空,则直接在i位置设置相关的节点
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//如果通过hash找到的位置有数据,则发生了hash碰撞
Node<K,V> e; K k;
//节点key存在,直接覆盖value值
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果是红黑树,则调用红黑树的putTreeVal设置值
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//如果是链表,进行循环
for (int binCount = 0; ; ++binCount) {
//如果链表中没有最新插入的节点,将新放入的数据放到链表的末尾
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//链表长度大于8转换为红黑树进行处理
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//key已经存在直接覆盖value,跳出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//经过上面的循环后,如果e不为空,则说明上面插入的值已经存在于当前的hashMap中,那么更新指定位置的键值对
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//HashMap的size大于阀值,则进去扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
复制代码
总结一下put方法,先根据key得到hash值,然后找到对应的index下标,再判断index下标是否有值,没有值直接插入,如果有值再判断是否有key、hash都一样的,这样的就直接更新值;或者不是再判断是链表或者是红黑树,如果是链表然后对应找是否有对应的节点存在,存在更新值,不存在就拆入节点;如果是红黑树,通过一系列的判断是更新还是新增,这样不做介绍了
hash方法
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
复制代码
key不为null时,取key的hashCode()与h的右移16位做异或运算,右移16位也就是取了int类型的一般,这样能保证结果均匀分布
resize()方法
final Node<K,V>[] resize() {
//拿到老的tab数据
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//老的阀值
int oldThr = threshold;
//新的容量及其阀值
int newCap, newThr = 0;
//tab容量大于0
if (oldCap > 0) {
//tab容量大于最大容量,不再扩容,直接设置为Interger类型的最大值
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//如果旧的容量不小于默认的初始容量,则进行扩容,容量扩张为原来的二倍
newThr = oldThr << 1; // double threshold
}
//老阀值大于0,直接用老阀值的值赋值给新的容量
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
//如果阈值为零,表示使用默认的初始化值,这种情况在调用无参构造的时候会出现,此时使用默认的容量和阈值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
//newThr为 0 时,按阈值计算公式进行计算,容量*负载因子
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//更新阀值
threshold = newThr;
//更新数据桶
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//如果之前的数组桶里面已经存在数据,由于table容量发生变化,hash值也会发生变化,需要重新计算下标
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
复制代码
总结一下:table是否初始化,如果没有初始化就调用无参构造方法,设置默认值;如果以及初始化就进行二倍扩容。
扩容后创建新的table,需要对所有数据进行遍历,如果计算的位置数据为空,直接插入;如果计算的位置为链表,则通过hash算法重新计算下标,然后对链表进行分组;如果是红黑树,则需要进行拆分操作。
删除元素
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
//根据key和key的hash值,找到相对应的元素
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//如果找到了节点进行移除则可,移除分为红黑树移除,链表的移除
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
复制代码
查找元素
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//判断tab不为null,且tab长度大于0,first节点不为null才能取对应的节点
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//判断first节点的hash和目标的hash是否一致,并且key不为null且和first.key相等就取得是第一个first节点数据
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//得到e,e的初始值为first的next,接下来都是e=e.next,只要不为null,就进行判断取值
if ((e = first.next) != null) {
//如果是红黑树,则通过取红黑树的TreeNode取到对应的节点
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
//判断hash、key都一致则返回e节点,跳出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
复制代码
其他方法
像containsKey()、clear()这几个我们也来简单的看一下
//containsKey就是getNode判断节点是否为null
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
//循环设置i位置的元素为null
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}
复制代码
线程安全问题
- HashMap是线程不安全的
- HashTable是线程安全的
- Collections.synchronizedMap()可实现HashMap的线程安全
- ConcurrentHashMap是线程安全的
相关对比
Java自带的HashMap、HashTable、ConcurrentHashMap、LinkedHashMap、TreeMap之间的对比,还有HashMap和Android独有的SparseArray、ArrayMap的对比
LinkedHashMap:LRU Cache就是通过LinkedHashMap去简单扩展实现的