6种方式创建多层索引MultiIndex
公众号:尤而小屋
作者:Peter
编辑:Peter
大家好,我是Peter~
在上一篇文章中介绍了如何创建Pandas中的单层索引,今天给大家带来的是如何创建Pandas中的多层索引。
pd.MultiIndex,即具有多个层次的索引。通过多层次索引,我们就可以操作整个索引组的数据。本文主要介绍在Pandas中创建多层索引的6种方式:
- pd.MultiIndex.from_arrays():多维数组作为参数,高维指定高层索引,低维指定低层索引。
- pd.MultiIndex.from_tuples():元组的列表作为参数,每个元组指定每个索引(高维和低维索引)。
- pd.MultiIndex.from_product():一个可迭代对象的列表作为参数,根据多个可迭代对象元素的笛卡尔积(元素间的两两组合)进行创建索引。
- pd.MultiIndex.from_frame:根据现有的数据框来直接生成
- groupby():通过数据分组统计得到
- pivot_table():生成透视表的方式来得到

pd.MultiIndex.from_arrays()
In [1]:
import pandas as pd
import numpy as np
复制代码通过数组的方式来生成,通常指定的是列表中的元素:
In [2]:
# 列表元素是字符串和数字
array1 = [["xiaoming","guanyu","zhangfei"], 
          [22,25,27]
         ]
m1 = pd.MultiIndex.from_arrays(array1)
m1
复制代码Out[2]:
MultiIndex([('xiaoming', 22),
            (  'guanyu', 25),
            ('zhangfei', 27)],
           )
复制代码In [3]:
type(m1)  # 查看数据类型
复制代码通过type函数来查看数据类型,发现的确是:MultiIndex
Out[3]:
pandas.core.indexes.multi.MultiIndex
复制代码在创建的同时可以指定每个层级的名字:
In [4]:
# 列表元素全是字符串
array2 = [["xiaoming","guanyu","zhangfei"],
          ["male","male","female"]
         ]
m2 = pd.MultiIndex.from_arrays(
	array2, 
  # 指定姓名和性别
  names=["name","sex"])
m2
复制代码Out[4]:
MultiIndex([('xiaoming',   'male'),
            (  'guanyu',   'male'),
            ('zhangfei', 'female')],
           names=['name', 'sex'])
复制代码下面的例子是生成3个层次的索引且指定名字:
In [5]:
array3 = [["xiaoming","guanyu","zhangfei"],
          ["male","male","female"],
          [22,25,27]
         ]
m3 = pd.MultiIndex.from_arrays(
	array3, 
	names=["姓名","性别","年龄"])
	
m3
复制代码Out[5]:
MultiIndex([('xiaoming',   'male', 22),
            (  'guanyu',   'male', 25),
            ('zhangfei', 'female', 27)],
           names=['姓名', '性别', '年龄'])
复制代码pd.MultiIndex.from_tuples()
通过元组的形式来生成多层索引:
In [6]:
# 元组的形式
array4 = (("xiaoming","guanyu","zhangfei"), 
          (22,25,27)
         )
m4 = pd.MultiIndex.from_arrays(array4)
m4
复制代码Out[6]:
MultiIndex([('xiaoming', 22),
            (  'guanyu', 25),
            ('zhangfei', 27)],
           )
复制代码In [7]:
# 元组构成的3层索引
array5 = (("xiaoming","guanyu","zhangfei"),
          ("male","male","female"),
          (22,25,27))
         
m5 = pd.MultiIndex.from_arrays(array5)
m5
复制代码Out[7]:
MultiIndex([('xiaoming',   'male', 22),
            (  'guanyu',   'male', 25),
            ('zhangfei', 'female', 27)],
           )
复制代码列表和元组是可以混合使用的:
- 最外层是列表
- 里面全部是元组
In [8]:
array6 = [("xiaoming","guanyu","zhangfei"),
          ("male","male","female"),
          (18,35,27)
         ]
# 指定名字
m6 = pd.MultiIndex.from_arrays(array6,names=["姓名","性别","年龄"])
m6
复制代码Out[8]:
MultiIndex([('xiaoming',   'male', 18),
            (  'guanyu',   'male', 35),
            ('zhangfei', 'female', 27)],
           names=['姓名', '性别', '年龄'] # 指定名字
           )
复制代码pd.MultiIndex.from_product()
使用可迭代对象的列表作为参数,根据多个可迭代对象元素的笛卡尔积(元素间的两两组合)进行创建索引。
在Python中,我们使用 isinstance()函数 判断python对象是否可迭代:
# 导入 collections 模块的 Iterable 对比对象
from collections import Iterable
复制代码

通过上面的例子我们总结:常见的字符串、列表、集合、元组、字典都是可迭代对象
下面举例子来说明:
In [18]:
names = ["xiaoming","guanyu","zhangfei"]
numbers = [22,25]
m7 = pd.MultiIndex.from_product(
    [names, numbers], 
    names=["name","number"]) # 指定名字
m7
复制代码Out[18]:
MultiIndex([('xiaoming', 22),
            ('xiaoming', 25),
            (  'guanyu', 22),
            (  'guanyu', 25),
            ('zhangfei', 22),
            ('zhangfei', 25)],
           names=['name', 'number'])
复制代码In [19]:
# 需要展开成列表形式
strings = list("abc") 
lists = [1,2]
m8 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
m8
复制代码Out[19]:
MultiIndex([('a', 1),
            ('a', 2),
            ('b', 1),
            ('b', 2),
            ('c', 1),
            ('c', 2)],
           names=['alpha', 'number'])
复制代码In [20]:
# 使用元组形式
strings = ("a","b","c") 
lists = [1,2]
m9 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
	
m9
复制代码Out[20]:
MultiIndex([('a', 1),
            ('a', 2),
            ('b', 1),
            ('b', 2),
            ('c', 1),
            ('c', 2)],
           names=['alpha', 'number'])
复制代码In [21]:
# 使用range函数
strings = ("a","b","c")  # 3个元素
lists = range(3)  # 0,1,2  3个元素
m10 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
	
m10
复制代码Out[21]:
MultiIndex([('a', 0),
            ('a', 1),
            ('a', 2),
            ('b', 0),
            ('b', 1),
            ('b', 2),
            ('c', 0),
            ('c', 1),
            ('c', 2)],
           names=['alpha', 'number'])
复制代码In [22]:
# 使用range函数
strings = ("a","b","c") 
list1 = range(3)  # 0,1,2
list2 = ["x","y"]
m11 = pd.MultiIndex.from_product(
	[strings, list1, list2],
  names=["name","l1","l2"]
  )
m11  # 总个数 3*3*2=18
复制代码总个数是“332=18`个:
Out[22]:
MultiIndex([('a', 0, 'x'),
            ('a', 0, 'y'),
            ('a', 1, 'x'),
            ('a', 1, 'y'),
            ('a', 2, 'x'),
            ('a', 2, 'y'),
            ('b', 0, 'x'),
            ('b', 0, 'y'),
            ('b', 1, 'x'),
            ('b', 1, 'y'),
            ('b', 2, 'x'),
            ('b', 2, 'y'),
            ('c', 0, 'x'),
            ('c', 0, 'y'),
            ('c', 1, 'x'),
            ('c', 1, 'y'),
            ('c', 2, 'x'),
            ('c', 2, 'y')],
           names=['name', 'l1', 'l2'])
复制代码pd.MultiIndex.from_frame()
通过现有的DataFrame直接来生成多层索引:
df = pd.DataFrame({"name":["xiaoming","guanyu","zhaoyun"],
                  "age":[23,39,34],
                  "sex":["male","male","female"]})
df
复制代码
直接生成了多层索引,名字就是现有数据框的列字段:
In [24]:
pd.MultiIndex.from_frame(df)
复制代码Out[24]:
MultiIndex([('xiaoming', 23,   'male'),
            (  'guanyu', 39,   'male'),
            ( 'zhaoyun', 34, 'female')],
           names=['name', 'age', 'sex'])
复制代码通过names参数来指定名字:
In [25]:
# 可以自定义名字
pd.MultiIndex.from_frame(df,names=["col1","col2","col3"])
复制代码Out[25]:
MultiIndex([('xiaoming', 23,   'male'),
            (  'guanyu', 39,   'male'),
            ( 'zhaoyun', 34, 'female')],
           names=['col1', 'col2', 'col3'])
复制代码groupby()
通过groupby函数的分组功能计算得到:
In [26]:
df1 = pd.DataFrame({"col1":list("ababbc"),
                   "col2":list("xxyyzz"),
                   "number1":range(90,96),
                   "number2":range(100,106)})
df1
复制代码Out[26]:

df2 = df1.groupby(["col1","col2"]).agg({"number1":sum,
                                        "number2":np.mean})
df2
复制代码
查看数据的索引:
In [28]:
df2.index
复制代码Out[28]:
MultiIndex([('a', 'x'),
            ('a', 'y'),
            ('b', 'x'),
            ('b', 'y'),
            ('b', 'z'),
            ('c', 'z')],
           names=['col1', 'col2'])
复制代码pivot_table()
通过数据透视功能得到:
In [29]:
df3 = df1.pivot_table(values=["col1","col2"],index=["col1","col2"])
df3
复制代码
In [30]:
df3.index
复制代码Out[30]:
MultiIndex([('a', 'x'),
            ('a', 'y'),
            ('b', 'x'),
            ('b', 'y'),
            ('b', 'z'),
            ('c', 'z')],
           names=['col1', 'col2'])
复制代码






















![[桜井宁宁]COS和泉纱雾超可爱写真福利集-一一网](https://www.proyy.com/skycj/data/images/2020-12-13/4d3cf227a85d7e79f5d6b4efb6bde3e8.jpg)

![[桜井宁宁] 爆乳奶牛少女cos写真-一一网](https://www.proyy.com/skycj/data/images/2020-12-13/d40483e126fcf567894e89c65eaca655.jpg)
