redis——Redis中的LRU算法改进

【摘要】 redis通常使用缓存,是使用一种固定最大内存的使用。当数据达到可使用的最大固定内存时,我们需要通过移除老数据来获取空间。redis作为缓存是否有效的重要标志是如何寻找一种好的策略:删除即将需要使用的数据是一种糟糕的策略,而删除那些很少再次请求的数据则是一种好的策略。 在其他的缓存组件还有个命中率,仅仅表示读请求的比例。访问一个缓存中的keys通常不是分布式的。然而访问经常变…

redis通常使用缓存,是使用一种固定最大内存的使用。当数据达到可使用的最大固定内存时,我们需要通过移除老数据来获取空间。redis作为缓存是否有效的重要标志是如何寻找一种好的策略:删除即将需要使用的数据是一种糟糕的策略,而删除那些很少再次请求的数据则是一种好的策略。
在其他的缓存组件还有个命中率,仅仅表示读请求的比例。访问一个缓存中的keys通常不是分布式的。然而访问经常变化,这意味着不经常访问,相反,有些keys一旦不流行可能会转向最经常访问的keys。 因此,通常一个缓存系统应该尽可能保留那些未来最有可能被访问的keys。针对keys淘汰的策略是:那些未来极少可能被访问的数据应该被移除。
但有一个问题:redis和其他缓存系统不能够预测未来。

LRU算法

缓存系统不能预测未来,原因是:那些很少再次被访问的key也很有可能最近访问相当频繁。如果经常被访问的模式不会突然改变,那么这是一种很有效的策略。然而,“最近经常被访问”似乎更隐晦地标明一种 理念。这种算法被称为LRU算法。最近访问频繁的key相比访问少的key有更高的可能性。
举个例子,这里有4个不同访问周期的key,每一个“~”字符代表一秒,结尾的“|”表示当前时刻。


~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享