【摘要】 Python时序分析基础、绘制时序图、白噪声检验、单位根检验、模型定阶
在==时序分析==众多模型中,最为基础也是最为重要的有AR§模型,MA(q)模型,以及两者的结合ARMA(p,q)模型,同时考虑ARMA模型的平稳性,若有一个或多个根落于单位圆上,则此时的ARMA模型称作自回归单整移动平均过程,ARIMA(p,d,q)模型。
这里介绍Python绘制ACF和PACF图,进行模型定阶
导入模块
import sys
import os
import pandas as pd
import matplotlib.pylab as plt
%matplotlib inline
import statsmodels.api as sm
import statsmodels.formula.api as smf
import statsmodels.tsa.api as smt
from statsmodels.tsa.stattools import adfuller
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.graphics.api import qqplot
"""中文显示问题"""
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
加载数据
data = pd.read_excel("data.xlsx",index_col="年份",parse_dates=True)
data.head()
<style scoped> </style>
xt | |
---|---|
年份 | |
1952-01-01 | 100.00000 |
1953-01-01 | 101.60000 |
1954-01-01 | 103.30000 |
1955-01-01 | 111.50000 |
1956-01-01 | 116.50000 |
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END
喜欢就支持一下吧
相关推荐