【摘要】 如果使用过Matlab或者Maple等软件,应该知道这类数学软件的符号计算引擎非常强大,可以进行数学公式的推导,比如可以对数学公式进行化简。当然,实现一个功能完备的化简引擎还是不容易的。这里用F# 实现一个简单的化简函数: ( a + x )+( a – x ) => 2 * a
如果使用过Matlab或者Maple等软件,应该知道这类数学软件的符号计算引擎非常强大,可以进行数学公式的推导,比如可以对数学公式进行化简。当然,实现一个功能完备的化简引擎还是不容易的。这里用F# 实现一个简单的化简函数。
首先定义一个表达式数据类型:
type Expr =
| CstF of float
| Var of string
| Add of Expr * Expr // +
| Sub of Expr * Expr // -
| Mul of Expr * Expr // *
| Div of Expr * Expr // /
其次定义一个化简函数,它是化简规则的具体实现:
(* 化简 *)
let rec simplify e =
match e with
| CstF f -> CstF f
| Var x -> Var x
| Add(CstF a, CstF b) -> CstF (a + b)
| Add(CstF 0., e2) -> simplify e2
| Add(e1 , CstF 0.) -> simplify e1
| Add(e1 , e2) when e1 = e2 -> simplify (Mul(CstF 2., simplify e1))
| Add(Mul(CstF a, e1) , Mul(CstF b, e2)) when e1 = e2 -> simplify (Mul(CstF (a + b), simplify e1))
| Add(e1,Sub(a,e2)) when e1 = e2 -> simplify a
| Add(Add(a, x1),Sub(b, x2)) when x1 = x2 -> simplify(Add(simplify a,simplify b))
| Add(e1, e2) -> Add(simplify e1,simplify e2)
| Mul(CstF a, CstF b) -> CstF (a * b)
| Mul(CstF 0., e2) -> CstF 0.
| Mul(e1 , CstF 0.) -> CstF 0.
| Mul(CstF 1., e2) -> simplify e2
| Mul(e1 , CstF 1.) -> simplify e1
| Mul(e1, e2) -> Mul(simplify e1,simplify e2)
| Sub(CstF a, CstF b) -> CstF (a - b)
| Sub(Add(e1,e2),e3) when e1 = e3 -> simplify e2
| Sub(Add(e1,e2),e3) when e2 = e3 -> simplify e1
| Sub(e1, e2) when e1 = e2 -> CstF 0.
| Sub(e1, e2) -> Sub(simplify e1,simplify e2)
| Div(CstF a, CstF b) -> CstF (a / b)
| Div(CstF 0., e2) -> CstF 0.
| Div(e1, e2) when e1 = e2 -> CstF 1.
| Div(e1, e2) -> Div(simplify e1,simplify e2)
| _ -> failwith "unknown operation"
这个化简函数,返回一个是一个自定义DSL的表达式结构,如Sub(Var “a”, Var “x”) ,下面再定义一个可以化简和打印出字符串的函数:
let rec simp e =
let res = simplify e
match res with
| CstF f -> string f
| Var x -> x
| Add(e1 , e2) -> "(" + (simp e1) + "+" + (simp e2) + ")"
| Sub(e1 , e2) -> "(" + (simp e1) + "-" + (simp e2) + ")"
| Mul(e1 , e2) -> "(" + (simp e1) + "*" + (simp e2) + ")"
| Div(e1 , e2) -> "(" + (simp e1) + "/" + (simp e2) + ")"
| _ -> failwith "unknown operation";;
最后,再定义一个打印DSL表达式的函数:
let rec printExpr e =
match e with
| CstF f -> string f
| Var x -> x
| Add(e1 , e2) -> "(" + (printExpr e1) + "+" + (printExpr e2) + ")"
| Sub(e1 , e2) -> "(" + (printExpr e1) + "-" + (printExpr e2) + ")"
| Mul(e1 , e2) -> "(" + (printExpr e1) + "*" + (printExpr e2) + ")"
| Div(e1 , e2) -> "(" + (printExpr e1) + "/" + (printExpr e2) + ")"
| _ -> failwith "unknown operation";;
至此,可以测试一下,如何化简数学表达式
//( a + x ) + ( a - x )
let e1 = Add(Add(Var "a", Var "x"),Sub(Var "a", Var "x"))
printExpr e1 + " => " + simp e1 ;;
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END