@TOC
1 分类
图像滤波按图像域可分为两种类型:
- 邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算。一般用于图像平滑、图像锐化、特征提取(如纹理测量、边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子
- 频域滤波(Frequency Domain Filter),其本质是对像素频率的修改。一般用于降噪、重采样、图像压缩等。
按图像频率滤除效果主要分为两种类型:
- 低通滤波。滤除原图像的高频成分,即模糊图像边缘与细节。
- 高通滤波。滤除原图像的低频成分,即图像锐化。
导入原图和噪图
import cv2,skimage
import numpy as np
# 原图
srcImg = cv2.imread("test.jpg")
cv2.imshow("src image", srcImg)
# 给图像增加高斯噪声
noiseImg = skimage.util.random_noise(srcImg, mode='gaussian')
cv2.imshow("image with noise", noiseImg)
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END