Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU

Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU步骤详解。

 

1.驱动安装

打开软件更新,点击附加驱动,选择N卡的驱动

首先添加源
$ sudo add-apt-repository ppa:graphics-drivers/ppa
$ sudo apt update
查看系统gpu设备
$ ubuntu-drivers devices

 

在此安装nvidia-driver-410,执行
$sudo apt-get install nvidia-driver-410

更改后重启电脑,查看GPU信息


至此驱动安装好了
 

2.cuda10.0安装

首先安装环境依赖

$sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

下载cuda10.0及其相关https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=runfilelocal
 


 

下载完之后进入到下载的文件夹中,安装
$ sudo sh cuda_10.0.130_410.48_linux.run
第一个提示选择no,其余的yes或者default
然后编辑环境变量,添加以下内容,并启用: source ~/.bashrc
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:$CUDA_HOME/bin
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
之后,输入
$nvcc -V
显示如下内容表明安装成功
 


 

$cd /usr/local/cuda-9.0/samples
$sudo make
$./bin/x86_64/linux/release/deviceQuery
显示如下内容

 



 


3.cudnn7.5的安装


下载:https://developer.nvidia.com/rdp/cudnn-download
得到文件:cudnn-10.0-linux-x64-v7.5.0.56.tgz
进入到文件目录,执行
$ tar zxvf cudnn-10.0-linux-x64-v7.5.0.56.tgz
解压后得到 名为 cuda 的文件夹,需要将里面的几个文件拷贝到已安装的cuda文件夹下面,并赋予相应的权限
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
之后执行
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
若显示以下内容表明安装成功

 


 


4.anaconda 安装
下载得到文件 Anaconda3-2018.12-Linux-x86_64.sh
在文件目录中,执行+
sudo sh Anaconda3-2018.12-Linux-x86_64.sh
出现如下选择yes

 


 


最后选择不安装vs code
安装完后需要执行
source ~/.bashrc

anaconda换源:
制定清华的源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
有资源显示源地址:
conda config --set show_channel_urls yes
5.tensorflow-gpu安装
安装前先安装bazel, 参见官方安装手册
安装完bazel后执行
conda install tensorflow-gpu
之后进入Python 环境 导入一下tensorflow,
import tensorflow as tf
tf.__version__
hello = tf.constant(‘hello tensorflow’)
sess = tf.Session()
sess.run(hello)
 


 

免责声明:务必仔细阅读

  • 本站为个人博客,博客所转载的一切破解、path、补丁、注册机和注册信息及软件等资源文章仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络,版权争议与本站无关。

  • 本站为非盈利性站点,打赏作为用户喜欢本站捐赠打赏功能,本站不贩卖软件等资源,所有内容不作为商业行为。

  • 本博客的文章中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合法性,准确性,完整性和有效性,请根据情况自行判断.

  • 本博客的任何内容,未经许可禁止任何公众号、自媒体进行任何形式的转载、发布。

  • 博客对任何脚本资源教程问题概不负责,包括但不限于由任何脚本资源教程错误导致的任何损失或损害.

  • 间接使用相关资源或者参照文章的任何用户,包括但不限于建立VPS或在某些行为违反国家/地区法律或相关法规的情况下进行传播, 博客对于由此引起的任何隐私泄漏或其他后果概不负责.

  • 请勿将博客的任何内容用于商业或非法目的,否则后果自负.

  • 如果任何单位或个人认为该博客的任何内容可能涉嫌侵犯其权利,则应及时通知并提供身份证明,所有权证明至admin@proyy.com.我们将在收到认证文件后删除相关内容.

  • 任何以任何方式查看此博客的任何内容的人或直接或间接使用该博客的任何内容的使用者都应仔细阅读此声明。博客保留随时更改或补充此免责声明的权利。一旦使用并复制了博客的任何内容,则视为您已接受此免责声明.

您必须在下载后的24小时内从计算机或手机中完全删除以上内容.

您使用或者复制了本博客的任何内容,则视为已接受此声明,请仔细阅读


更多福利请关注一一网络微信公众号或者小程序

一一网络微信公众号
打个小广告,宝塔服务器面板,我用的也是,很方便,重点是免费的也能用,没钱太难了,穷鬼一个,一键全能部署及管理,送你3188元礼包,点我领取https://www.bt.cn/?invite_code=MV9kY3ZwbXo=


一一网络 » Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU

发表评论

发表评论

一一网络-提供最优质的文章集合

立即查看 了解详情