Python OpenCV 图片高斯模糊

Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。

基础知识铺垫

看到一种说法,解释高斯模糊的比较简单,高斯模糊是带加权的均值模糊。

大概解释如下:

高斯模糊实质上就是一种均值模糊,只是高斯模糊是按照加权平均的,距离越近的点权重越大,距离越远的点权重越小。

通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。

不过阅读起来还是比较费劲的,这种情况,有两种学习方式

第一种,去死磕线性代数,研究卷积算法

第二种,先放一下,因为目前高斯模糊的应用场景,还未完全明确,可以日后用到这部分知识,在进行学习,橡皮擦选择第二种。

高斯模糊在美颜软件上挺常见的,专业图片处理工具也一定有,主要用在磨皮与毛玻璃效果上。

关于高斯模糊,还真找到一篇不错的博客,可以参考(建议在新选项卡打开,对照着学习)。

寻找资料的时候,还发现一个大佬关于高斯模糊的解释,可以参考

函数原型介绍

高斯模糊(Gaussian Blur)

函数原型如下:

dst = cv2.GaussianBlur(src, ksize, sigmaX, dst=None, sigmaY=None, borderType=None)

参数说明:

  1. src:原图像;
  2. ksize: 高斯核的大小,格式为(width, height),其中 width 和 height 可以不同,两者都是正奇数;如果设为 0,则根据 sigma 得到;
  3. sigmaX: X 方向的高斯核标准差;
  4. sigmaY: Y 方向的高斯核标准差,如果 sigmaY 设为 0,则与 sigmaX 相等,如果两者都为 0,则可以根据 ksize 来计算得到;

官方手册查阅

测试代码如下:

import cv2
import numpy as np
img = cv2.imread('test.jpg')

# dst = cv2.GaussianBlur(img,ksize=(5,5),sigmaX=0,sigmaY=0)
# 创建毛玻璃特效
# 参数2:高斯核的宽和高(建议是奇数)
# 参数3:x和y轴的标准差
dst = cv2.GaussianBlur(img, (5, 5), 0)
cv2.imshow('dst', dst)

cv2.waitKey()

运行效果与原图对比:

你可以继续修改参数值,高斯核尺寸和标准差越大,处理后的图片越模糊

dst1 = cv2.GaussianBlur(img, (5, 5), 0.5)
dst2 = cv2.GaussianBlur(img, (5, 5), 1.5)
dst3 = cv2.GaussianBlur(img, (9, 9), 1.5)
cv2.imshow('dst1', dst1)
cv2.imshow('dst2', dst2)
cv2.imshow('dst3', dst3)

橡皮擦的小节

本系列博客为学习之旅,部分概念在没有学到,或者必须彻底掌握前,不做扩展学习。保持每天 1 个小时的学习时间即可。

1 个小时又过去了,对 Python OpenCV 相关的知识点,你掌握了吗?

做为初学者,还有很多地方学习的不深入,希望你与我一起坚持下去。

相关阅读


  1. Python 爬虫 100 例教程,超棒的爬虫教程,立即订阅吧
  2. Python 爬虫小课,精彩 9 讲

今天是持续写作的第 62 / 100 天。
如果你有想要交流的想法、技术,欢迎在评论区留言。


如果你想跟博主建立亲密关系,可以关注同名公众号 梦想橡皮擦,近距离接触一个逗趣的互联网高级网虫。
博主 ID:梦想橡皮擦,希望大家点赞评论收藏

免责声明:务必仔细阅读

  • 本站为个人博客,博客所转载的一切破解、path、补丁、注册机和注册信息及软件等资源文章仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络,版权争议与本站无关。

  • 本站为非盈利性站点,打赏作为用户喜欢本站捐赠打赏功能,本站不贩卖软件等资源,所有内容不作为商业行为。

  • 本博客的文章中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合法性,准确性,完整性和有效性,请根据情况自行判断.

  • 本博客的任何内容,未经许可禁止任何公众号、自媒体进行任何形式的转载、发布。

  • 博客对任何脚本资源教程问题概不负责,包括但不限于由任何脚本资源教程错误导致的任何损失或损害.

  • 间接使用相关资源或者参照文章的任何用户,包括但不限于建立VPS或在某些行为违反国家/地区法律或相关法规的情况下进行传播, 博客对于由此引起的任何隐私泄漏或其他后果概不负责.

  • 请勿将博客的任何内容用于商业或非法目的,否则后果自负.

  • 如果任何单位或个人认为该博客的任何内容可能涉嫌侵犯其权利,则应及时通知并提供身份证明,所有权证明至admin@proyy.com.我们将在收到认证文件后删除相关内容.

  • 任何以任何方式查看此博客的任何内容的人或直接或间接使用该博客的任何内容的使用者都应仔细阅读此声明。博客保留随时更改或补充此免责声明的权利。一旦使用并复制了博客的任何内容,则视为您已接受此免责声明.

您必须在下载后的24小时内从计算机或手机中完全删除以上内容.

您使用或者复制了本博客的任何内容,则视为已接受此声明,请仔细阅读


更多福利请关注一一网络微信公众号或者小程序

一一网络微信公众号
打个小广告,宝塔服务器面板,我用的也是,很方便,重点是免费的也能用,没钱太难了,穷鬼一个,一键全能部署及管理,送你3188元礼包,点我领取https://www.bt.cn/?invite_code=MV9kY3ZwbXo=


一一网络 » Python OpenCV 图片高斯模糊

发表评论

发表评论

一一网络-提供最优质的文章集合

立即查看 了解详情